Managing Forests for Sustainable Harvest and Wildlife Habitat Using Earth Observations and Modeling of Forest Structure and Landscape Connectivity

Andrew J Elmore, Matt C Fitzpatrick U of Maryland Center for Environmental Science Appalachian Laboratory, Frostburg, MD

Jeff Larkin Indiana University of Pennsylvania and The American Bird Conservancy

Collin Shepherd **USFS Allegany National Forest**

Joseph Petroski PA Department of Conservation and Natural Resources

Ben Jones PA Game Commission

pennsylvania

DEPARTMENT OF CONSERVATION

AND NATURAL RESOURCES

Management of PA forests for bird habitat

- * 40% of the 16.7 million acres of forest in PA are greater than 80 years old
- * >50% of PA forests are fully stocked with a net growth-to-removal ratio of 2:1
- * Lack of early successional forest habitat is associated with **declines** in populations of Golden-winged Warbler, Cerulean Warbler, and Wood Thrush.
- * Increases in population size observed in a variety of other bird species, including the Pileated woodpecker, Yellow-bellied sapsucker, Acadian Flycatcher, Yellow-throated vireo, Ovenbird, Worm-eating warbler, Hoodedwarbler, Magnolia warbler, Black-throated blue warbler, and Black-throated green warbler.

Golden-winged Warblers population decline

- * ~2.3% decline per year range wide (North American BBS; Sauer et al. 2017)
- * 61% decline in occupancy in 20 yrs (PA Breeding Bird Atlas)

2nd PA Breeding Bird Atlas (2004-2008)

Fledgling movement data demonstrate the importance of landscape structure

Project Conceptual Framework

Forest Structure

Landscape Structure

Models of how bird habitat depends on structure

Forest Harvest Model
Site Information
Etc.

Forest Harvest and Treatment Decisions

Lidar Metrics

- 1. Mean canopy height (CH)
- 2. 95% Canopy Height
- 3. Standard deviation of CH
- Coefficient of variation of canopy height
- 5. Percent of first returns > 2m
- Percent of first returns > mean canopy height
- Height of the median return (HOME)
- 8. Vertical distribution ratio (VDR)

Statistical Description

- Use Principal Components
 Analysis (PCA) to condense
 variability in LiDAR point cloud
 into a few dimensions
- Use this reduced dimensionality to quantify forest structure, classify patches, and as covariates of bird habitat suitability
- Based on proportions of returns in each voxel – and intensity & greenness

PCA of forest structure

- First 3 PCs plotted as Red / Green / Blue
- 2. ~20% of variance explained
- 3. Can be submitted to clustering algorithms to produce discrete forest classification

Forest Structure Classes

Dickinson et al. Can. J. For. Res. 44: 301–312 (2014)

Updating LiDAR forest structure using Landsat time series of forest disturbance

Continuous Change Detection and Classification (CCDC; Zhu et al. (2012))

Example LiDAR metric across classes

Landscape structure

Focus on quantifying composition & configuration of forest patch types at different distances from patches

- 1. Richness The number of patch classes
- 2. Shannon's Diversity accounts for proportional abundance of each class
- 3. Contagion accounts for proportional abundance and class adjacency type
- 4. Shape ratio of patch perimeter divided by patch area
- 5. Proximity sum of patch area and squared distance between patches of the same class
- 6. Edge density the total length of edge divided by the focal area

Occupancy
models for a suite
of bird species of
management
interest

Project Conceptual Diagram

Forest Structure Before and After Harvest

- 40

- 35

30

25

20

15

Landscape structure before and after harvest

Things that could go wrong

- * Remote sensing-based forest structure won't capture the finer aspects of forest structure important for habitat.
- * Landscape structure metrics won't be an important predictor of bird occurrence.
- * The model works really well and supports cutting down all the forests to increase bird habitat to the detriment of other species.

